网文内容
网络安全领域,一场新的风暴正在席卷。
深信服首秀安全GPT技术应用,实力刷屏。着极强的好奇心,大家都想深挖深信服安全GPT背后的技术积累。
经过梳理,大家常常提及的有以下9个问题,今天深信服一次性进行详细解答,希望能帮助大家全面了解AI+安全,以及安全GPT技术应用。
关于AI+网络安全
Q1:从小模型到大模型,“AI+网络安全”如何发展?
生成式大模型的爆火不是一蹴而就的。AI技术经历了从决策式小模型到生成式大模型的发展历程。
最近十年,决策式小模型被大规模应用在电商、娱乐、人脸识别、自动驾驶、文本分析等领域,不知不觉早已在各行各业中司空见惯。今年开始,以ChatGPT为代表的生成式大模型爆火,慢慢涌现出在不同行业的技术应用,网络安全亦是其中之一。
顺应技术发展趋势,以深信服为例,作为国内最早应用AI的网络安全厂商之一,深信服在2015年开始投入决策式AI技术的研究和应用。2016年,深信服不断加码AI技术并确立了AI First的研发战略,在网络安全和云计算领域都有可落地、有效果的技术突破:
未知病毒检出率国内第一的SAVE 3.0引擎
实现云原生应用自我保护的NoDR技术
精确度超90%的AIOps 智能运维分析引擎
……
目前深信服在十几个不同的技术领域都用到了人工智能,均取得了良好效果,这些技术大量应用到深信服的产品和用户使用场景中,深受认可。
从AI小模型到提出AI First战略,深信服累积了研发垂直领域AI大模型所需的高质量数据语料、既懂AI又懂安全的人才、面向AI体系化协同的云网端产品体系。
基于这些积累,在2022年明确全面拥抱大模型后,深信服得以在业界首秀安全GPT,为网络安全发展注入新动能。
Q2:为什么网络安全领域需要GPT大模型技术应用?
一方面,GPT大模型的出现,让攻击方可以更便捷快速地生成攻击工具、混淆攻击代码等,针对性地构造未知、高级的攻击。当前安全设备对于这种未知恶意样本查杀能力较弱,很容易被攻击者绕过。而过去广泛应用于安全检测领域的AI机器学习小模型,每种模型只能用于单一检测场景,小模型训练与研发效率较低,误报率居高不下。
另一方面,在安全运营工作中,人员能力和精力仍然是巨大的瓶颈。即使是专家级别的运营人员,面对高级安全威胁也要花费数小时甚至数天进行分析和研判,同时在某些领域仍会存在能力短板。安全运营效率和效果提升面临较大的发展瓶颈。
深信服认为,面对攻击方使用大模型,防守方能力瓶颈难以突破的情况下,防守方也要充分拥抱大模型,以智能对抗智能,以AI赋能防守,方能应对大模型时代的安全挑战。大模型既有泛化的检测能力,也有高质量的攻击解释能力,以及分析态势和处置建议的生成能力,由此可以提升高级威胁检出率、降低误报率(安全告警里判错的比例),极大拉高安全运营团队的能力水位线,促进安全建设效果、效率的提升。
Q3:网络安全行业玩转GPT大模型有哪些门槛?
数据、算力、模型算法、产品架构是在网络安全领域玩转GPT大模型的门槛,此外,我们也不能忽视复合型人才队伍的打造。
作为一家深耕网络安全和云计算的公司,深信服在安全领域应用GPT技术有一些天然优势:
面向AI模型训练的高质量数据和算力
持续累计的千亿级Token安全语料。
自动化的训练数据生成和质量管理平台。
55w+安全设备和组件接入云端。
每日更新数千万训练样本。
基于托管云的分布式算力平台。
云网端智能产品架构
数据采集/模型训练/部署落地全流程的安全产品。
国内率先推出SASE、MSS等云化产品和服务。
Genius AI研发平台模型训练速度提升3.5倍。
全国100+节点托管云,支撑安全GPT贴近用户部署。
四位一体的专家队伍
快速组建既懂安全、又懂AI的专业团队。
Q4:以GPT为代表的AI技术应用于网络安全,主要带来哪些方面的增益提效?